
Alef Language Reference Manual

Phil Winterbottom
philw@plan9.att.com

Introduction

Alef is a concurrent programming language designed for systems software. Excep
tion handling, process management, and synchronization primitives are implemented by
the language. Programs can be written using both shared variable and message passing
paradigms. Expressions use the same syntax as C, but the type system is substantially
different. Alef supports object-oriented programming through static inheritance and
information hiding. The language does not provide garbage collection, so programs are
expected to manage their own memory. This manual provides a bare description of the
syntax and semantics of the current implementation.

Much of the terminology used in this manual is borrowed from the ANSI C lan
guage reference manual and the Plan 9 manual. The manual expects familiarity with
both.

1. Lexical

Compilation starts with a preprocessing phase. An ANSI C preprocessor is used.
The preprocessor performs file inclusion and macro substitution. Comments and lines
beginning with the # character are consumed by the preprocessor. The preprocessor
produces a sequence of tokens for the compiler.

1.1. Tokens

The lexical analyzer classifies tokens as: identifiers, typenames, keywords, con
stants, and operators. Tokens are separated by white space, which is ignored in the
source except as needed to separate sequences of tokens which would otherwise be
ambiguous. The lexical analyzer is greedy: if tokens have been consumed up to a given
character, then the next token will be the longest subsequent string of characters that
forms a legal token.

1.2. Reserved Words

The following keywords are reserved by the language and may not be used as iden
tifiers:

 2

adt aggr alloc
alt become break
byte case chan
check continue default
do else enum
extern float for
goto if int
intern lint nil
par proc raise
rescue return sint
sizeof switch task
tuple typedef typeof
uint ulint unalloc
union usint void
while zerox

The following symbols are used as separators and operators in the language:

+ − / =
> < ! %
& | ? .
" ’ { }
[] ()
* ;

The following multi-character sequences are used as operators:

+= −= /= *=
%= &= |= ^=
<<= >>= == !=
−− <− −> ++
:: :=

1.3. Comments

Comments are removed by the preprocessor. A comment starts with the characters
/* and finishes at the characters */. A comment may include any sequence of charac
ters including /*. Comments do not nest.

1.4. Identifiers

An identifier, also called a lexical name, is any sequence of alpha-numeric charac
ters and the underscore character _. Identifiers may not start with a digit. Identifiers
are case sensitive. All characters are significant. Identifiers beginning with the string
ALEF are reserved for use by the runtime system.

1.5. Constants

There are five types of constant:

constant:
integer−const
character−const
floating−const
string−const
rune−string−const

An integer constant is a sequence of digits. A prefix may be used to modify the base of
a number. Defined prefixes, bases, and digit sets are:

 3

none decimal 0−9
0x hexadecimal 0−9 a−f A−F
0 octal 0−7

A character constant contains one or more characters surrounded by single quote marks
’. If the constant contains two or more characters the first must be the escape charac
ter \. The following table shows valid characters after an escape and the value of the
constant:

0 NUL Null character
n NL Newline
r CR Carriage return
t HT Horizontal tab
b BS Backspace
f FF Form feed
a BEL Beep
v VT Vertical tab
\ \ Backslash
" " Double quote

Character constants have the type int. The range of values they hold depends on the
character set. In Plan 9, the input text is in UTF and character constants hold the 16-bit
representation of the Unicode character (see rune(6) in Volume 1 of the Plan 9
Programmer�s Manual).

A floating point constant consists of an integer part, a period, a fractional part, the
letter e and an exponent part. The integer, fraction and exponent parts must consist of
decimal digits. Either the integer or fractional parts may be omitted. Either the decimal
point or the letter e and the exponent may be omitted. The integer part or period and
the exponent part may be preceded by the unary + or − operators. Floating point con
stants have the type float.

A string constant is a sequence of characters between double quote marks ". A
string has the type �static array of byte�. A NUL (zero) character is automatically
appended to the string by the compiler. The effect of modifying a string constant is
implementation dependent. The sizeof operator applied to a string constant yields
the number of bytes including the appended NUL.

A rune string constant is a sequence of Unicode characters introduced by $" and
terminated by ". A rune string has the type �static array of usint�. A zero rune character
is automatically appended to the string by the compiler. The sizeof operator applied
to a rune string constant yields the number of runes, including the appended zero,
times sizeof (usint).

1.6. Programs

An Alef program is a list of declarations stored in one or more source files. The
declarations introduce identifiers. Identifiers may define variables, types, functions,
function prototypes, or enumerators. Identifiers have associated storage classes and
scope (see Section 2). For functions and variables declared at the file scope the storage
class determines if a definition can be accessed from another file.

1.7. Processes and Tasks

The term process is used to refer to a preemptively scheduled thread of execution.
A process may contain several tasks. A task is a non-preemptively scheduled coroutine
within a process. The memory model does not define the sharing of memory between
processes. On a shared memory computer processes will typically share the same
address space. On a multicomputer processes may be located on physically distant
nodes with access only to local memory. In such a system processes would not share the

 4

same address space, and must communicate using message passing.

A group of tasks executing within the context of a process are defined to be in the
same address space. Tasks are scheduled during communication and synchronization
operations. The term thread is used wherever the distinction between a process and a
task is unimportant.

2. Definitions and Declarations

A declaration introduces an identifier and specifies its type. A definition is a decla
ration that also reserves storage for an identifier. An object is an area of memory of
known type produced by a definition. Function prototypes, variable declarations pre
ceded by extern, and type specifiers are declarations. Function declarations with bod
ies and variable declarations are examples of definitions.

2.1. Scope

Identifiers within a program have scope. There are four levels of scope: local, func
tion, type, and file:

� A local identifier is declared at the start of a block. A local has scope starting from
its declaration to the end of the block in which it was declared.

� Exception identifiers and labels have the scope of a function. These identifiers can
be referenced from the start of a function to its end, regardless of position of the
declaration.

� A member of a complex type is in scope only when a dereferencing operator . or
−> is applied to an object of the type. Hidden type members have special scope
and may only be referenced by function members of the type.

� All definitions outside of a function body have the scope of file. Unqualified decla
rations at the file scope have static storage class.

2.2. Storage classes

There are three storage classes: automatic, parameter and static. Automatic
objects are created at entry to the block in which they were declared. The value of an
automatic is undefined upon creation. Automatic variables are destroyed at block exit.
Parameters are created by function invocation and are destroyed at function exit. Static
objects exist from invocation of the program until termination. Static objects which
have not been initialized have the value 0.

3. Types

A small set of basic types is defined by the language. More complex types may be
derived from the basic types.

3.1. Basic types

The basic types are:

 5

name size type___
byte 8 bits unsigned byte___
sint 16 bits signed short integer___
usint 16 bits unsigned short integer___
int 32 bits signed integer___
uint 32 bits unsigned integer___
float 64 bits floating point___
lint 64 bits long signed integer___
ulint 64 bits unsigned long integer___
chan 32 bits channel___
poly 64 bits polymorphic type___

The size given for the basic types is the minimum number of bits required to represent
that type. The format and precision of float is implementation dependent. The
float type should be the highest precision floating point provided by the hardware.
The lint and ulint types are not part of the current implementation but have been
defined. The alignment of the basic types is implementation dependent. Channels are
implemented by the runtime system and must be allocated before use. They are the size
of a pointer. Polymorphic types are represented by a pointer and a tag representing the
type. For a given implementation the polymorphic type has the same size as the follow
ing aggregate definition:

aggr Polytype
{

void* ptr;
int tag;

};

The void type performs the special task of declaring procedures returning no value
and as part of a derived type to form generic pointers. The void type may not be used
as a basic type.

3.2. Derived types

Types are derived in the same way as in C. Operators applied in declarations use
one of the basic types to derive a new type. The deriving operators are:

* create a pointer to
& yield the address of
() a function returning
[] an array of

These operators bind to the name of each identifier in a declaration or definition. Some
examples are:

int *ptr; /* A pointer to an integer */
byte c[10]; /* A vector of 10 bytes */
float *pow(); /* A function returning a pointer to float */

Complex types may be built from the basic types and the deriving operators. Complex
types may be either aggregates, unions, tuples, or abstract data types (ADT). These
complex types contain sequences of basic types and other derived types. An aggregate
is a simple collection of basic and derived types. Each element of the aggregate has
unique storage. An abstract data type has the same storage allocation as an aggregate
but also has a set of functions to manipulate the type, and a set of protection attributes
for each of its members. A union type contains a sequence of basic and derived types
that occupy the same storage. The size of a union is determined by the size of the larg
est member.

 6

The declaration of complex types introduces typenames into the language. After
declaration a typename can be used wherever a basic type is permitted. New typenames
may be defined from derived and basic types using the typedef statement.

The integral types are int, uint, sint, usint, byte, lint and ulint. The
arithmetic types are the integral types and the type float. The pointer type is a type
derived from the & (address of) operator or derived from a pointer declaration. The
complex types are aggr, adt, and union.

3.3. Conversions and Promotions

Alef performs the same implicit conversions and promotions as ANSI C with the
addition of complex type promotion: under assignment, function parameter evaluation,
or function returns, Alef will promote an unnamed member of a complex type into the
type of the left-hand side, formal parameter, or function.

4. Declarations

A declaration attaches a type to an identifier; it need not reserve storage. A decla
ration which reserves storage is called a definition. A program consists of a list of decla
rations:

program:
declaration−list

declaration−list:
declaration
declaration−list declaration

A declaration can define a simple variable, a function, a prototype to a function, an ADT
function, a type specification, or a type definition:

declaration:
simple−declarations
type−declaration
function−declaration
type−definition

4.1. Simple declarations

A simple declaration consists of a type specifier and a list of identifiers. Each iden
tifier may be qualified by deriving operators. Simple declarations at the file scope may
be initialized.

 7

simple−declarations:
type−specifier simple−decl−list ;

simple−decl−list:
simple−declaration
function−prototype
simple−decl−list , simple−declaration

function−prototype:
pointeropt identifier array−specopt (arglist) ;
(pointeropt identifier array−specopt) (arglist) ;

simple−declaration:
pointeropt identifier array−specopt
pointeropt identifier array−specopt = initializer−list

pointer:
*
pointer *

array−spec:
[constant−expression]
[constant−expression] array−spec

4.2. Array Specifiers

The dimension of an array must be non-zero positive constant. Arrays have a lower
bound of 0 and an upper bound of n−1, where n is the value of the constant expres
sion.

4.3. Type Specifiers

type−specifier:
scopeopt type

type:
byte
int
uint
sint
usint
lint
ulint
void
float
typename
polyname
tupletype
channel−specifier

 8

scope:
intern
extern

channel−specifier:
chan (typelist) buffer−specopt

tupletype:
tupleopt (typelist)

buffer−spec:
[constant−expression]

typelist:
ptr−type
ptr−type , typelist

ptr−type:
type−specifier
ptr−type pointeropt

polyname:
identifier

The keywords intern and extern control the scope of declarations. When applied
to a definition or declaration at the file scope, intern narrows the scope to the current
file; extern makes the declared identifier visible to other compilation units. By default
declarations at the file scope default to extern. The control of access to members of
abstract data types is defined in the discussion of ADT�s below.

Typename is an identifier defined by a complex type declaration or a typedef
statement.

4.3.1. Channel Type Specification

The type specified by a chan declaration is actually a pointer to an internal object
with an anonymous type specifier. Because of their anonymity, objects of this special
type cannot be defined in declarations; instead they must be created by an alloc
statement referring to a chan. A channel declaration without a buffer specification pro
duces a synchronous communication channel. Threads sending values on the channel
will block until some other thread receives from the channel. The two threads ren
dezvous and a value is passed between sender and receiver. If buffers are specified then
an asynchronous channel is produced. The constant−expression defines the number of
buffers to be allocated. A send operation will complete immediately while buffers are
available, and will block if all buffers are in use. A receive operation will block if no value
is buffered. If a value is buffered, the receive will complete and make the buffer avail
able for a new send operation. Any senders waiting for buffers will then be allowed to
continue.

Values of chan−type are passed between threads using the channel for communica
tion. If chan−type is a comma-separated list of types the channel supplies a variant pro
tocol. A variant protocol allows messages to be demultiplexed by type during a receive
operation. A form of the alt statement allows the control flow to be modified based
on the type of a value received from a channel supplying a variant protocol.

 9

4.3.2. Polymorphic Type

The polymorphic type can be used to dynamically represent a value of any type. A
polymorphic type is identified by a lexical name defined in a polymorphic type definition
(see the section on Type Definition) or as a parameter to a polymorphic abstract data
type (see the section on Polymorphic and Parameterized Abstract Data Types). Distinct
lexical names represent a value of the same structure but are different for the purposes
of type checking. A polymorphic value is represented by a fat pointer. The pointer con
sists of an integer tag and a pointer to a value. Like channels, storage for the data must
be allocated by the runtime.

4.4. Initializers

Only simple declarations at the file scope may be initialized.

initializer−list:
constant−expression
[constant−expression] constant−expression
{ initializer−list }
initializer−list , initializer−list

An initialization consists of a constant−expression or a list of constant-expressions sep
arated by commas and enclosed by braces. An array or complex type requires an
explicit set of braces for each level of nesting. Unions may not be initialized. All the
components of a variable need not be explicitly initialized; uninitialized elements are set
to zero. ADT types are initialized in the same way as aggregates with the exception of
ADT function members which are ignored for the purposes of initialization. Elements of
sparse arrays can be initialized by supplying a bracketed index for an element. Succes
sive elements without the index notation continue to initialize the array in sequence. For
example:

byte a[256] = {
[’a’] ’A’, /* Set element 97 to 65 */
[’a’+1] ’B’, /* Set element 98 to 66 */

’C’ /* Set element 99 to 67 */
};

If the dimensions of the array are omitted from the array−spec the compiler sets the
size of each dimension to be large enough to accommodate the initialization. The size
of the array in bytes can be found using sizeof.

4.5. Type Declarations

A type declaration creates a new type and introduces an identifier representing that
type into the language.

type−declaration:
complex { memberlist } ;
enumeration−type
tupletype

complex:
adt typename poly−specopt
aggr typename
union typename

poly−spec:
[typelist]

A complex type is composed of a list of members. Each member may be a complex

 10

type, a derived type or a basic type. Members are referenced by tag or by type. Mem
bers without tags are called unnamed. Arithmetic types, channel types, tuples, and
complex types may be unnamed. Derived types may not be left unnamed. Complex
unnamed members are referenced by type or by implicit promotion during assignment
or when supplied as function arguments. Other unnamed members allocate storage but
may not be referenced. Complex types are compared by structural rather than name
equivalence. A type declaration must have either a type name or a tag.

memberlist:
member
memberlist member

member:
type ;
tname pointeropt decl−tag array−specopt ;
tname decl−tag (arglist) ;

decl−tag:
identifier

tname is one of the basic types or a new type introduced by aggr, adt, union, or
typedef.

4.6. Tuples

A tuple is a collection of types forming a single object which can be used in the
place of an unnamed complex type. The individual members of a tuple can only be
accessed by assignment.

tuple:
(tlist)

tlist:
tlist , expression

When the declaration of a tuple would be ambiguous because of the parenthesis (for
instance in the declaration of an automatic variable) use the keyword tuple:

void
f()
{

int a;
tuple (int, byte, Rectangle) b;
int c;

}

Type checking of tuple expressions is performed by matching the shape of each of the
component types. Tuples may only be addressed by assignment into other complex
types or l-valued tuple expressions. A bracketed list of expressions forms a tuple con
structor, while a list of l-valued expressions on the left hand side forms a destructor.
For example, to make a function return multiple values:

 11

(int, byte*, byte)
func()
{

return (10, "hello", ’c’);
}

void
main()
{

int a;
byte* str;
byte c;
(a, str, c) = func();

}

When a tuple appears as the left-hand side of an assignment, type checking proceeds as
if each individual member of the tuple were an assignment statement to the correspond
ing member of the complex type on the right-hand side. If a tuple appears on the right
hand side of an assignment where the left-hand side yields a complex type then the
types of each individual member of the tuple must match the corresponding types of the
complex type exactly. If a tuple is cast into a complex type then each member of the
tuple will be converted into the type of the corresponding member of the complex type
under the rules of assignment.

aggr X
{

int a;
byte b;

};

void
main()
{

X x;
byte c;

x = (10, c); /* Members match exactly */
x = (X)(10, 1.5); /* float is converted to byte */

}

4.7. Abstract Data Types

An abstract data type (ADT) defines both storage for members, as in an aggregate,
and the operations that can be performed on that type. Access to the members of an
abstract data type is restricted to enable information hiding. The scope of the members
of an abstract data type depends on their type. By default access to members that define
data is limited to the member functions. Members can be explicitly exported from the
type using the extern storage class in the member declaration. Member functions are
visible by default, the opposite behavior of data members. Access to a member function
may be restricted to other member functions by qualifying the declaration with the
intern storage class. The four combinations are:

 12

adt Point
{

int x; /* Access only by member fns */
extern int y; /* by everybody */

Point set(Point*); /* by everybody */
intern Point tst(Point); /* only by member fns */

};

Member functions are defined by type and name. The pair forms a unique name for the
function, so the same member function name can be used in many types. Using the last
example, the member function set could be defined as:

Point
Point.set(Point *a)
{

a−>x = 0; /* Set Point value to zero */
a−>y = 0;

return *a;
}

An implicit argument of either a pointer to the ADT or the value of the ADT may be
passed to a member function. If the first argument of the member function declaration
in the ADT specification is * typename (with the * preceding the name), then a pointer
to the ADT is automatically passed as the first parameter, similarly to the self con
struct in Smalltalk. If the declaration is of the form . typename then the value of the
ADT will be passed to the member function.

adt Point
{

int x;
extern int y;

/* Pass &Point as 1st arg */
Point set(*Point);
/* Pass Point as 1st arg */
Point clr(.Point);

intern Point tst(Point);
};

void
func()
{

Point p;

p.set(); /* Set receives &p as 1st arg */
}

The receiving function is defined as:

Point
Point.set(Point *p)
{

...
}

 13

4.8. Polymorphic and Parameterized Abstract Data Types

Alef allows the construction of type parameterized abstract data types, similar to
generic abstract data types in Ada and Eiffel. An ADT is parameterized by supplying
type parameter names in the declaration. The type parameters may be used to specify
the types of members of the ADT. The argument type names have the same effect as a
typedef to the polymorphic type. The scope of the types supplied as arguments is the
same as the ADT typename and can therefore be used as a type specifier in simple dec
larations. For example the definition of a stack type of parameter type T may be
defined as:

adt Stack[T]
{

int tos;
T data[100];
void push(*Stack, T);
T pop(*Stack);

};

Member functions of Stack are written in terms of the parameter type T. The imple
mentation of push might be:

void
Stack.push(Stack *s, T v)
{

s−>data[s−>tos++] = v;
}

The Stack type can be instantiated in two forms. In the bound form, a type is specified
for T. The program is type checked as if the supplied type were substituted for T in the
ADT declaration. For example:

Stack[int] stack;

declares a stack where each element is an int. In the bound form a type must be sup
plied for each parameter type. In the unbound form no parameter types are specified.
This allows values of any type to be stored in the stack. For example:

Stack poly;

declares a stack where each element has polymorphic type.

4.9. Enumeration Types

enumeration−type:
enum typename { enum−list } ;

enum−list:
identifier
identifier = constant−expression
enum−list , enum−list

Enumerations are types whose value is limited to a set of integer constants. These con
stants, the members of the enumeration, are called enumerators. Enumeration variables
are equivalent to integer variables. Enumerators may appear wherever an integer con
stant is legal. If the values of the enumerators are not defined explicitly, the compiler
assigns incrementing values starting from 0. If a value is given to an enumerator, values
are assigned to the following enumerators by incrementing the value for each successive
member until the next assigned value is reached.

 14

4.10. Type Definition

Type definition allows derived types to be named, basic types to be renamed, poly
morphic types to be named, and forward referencing between complex types.

type−definition:
typedef tname identifier ;
typedef polyname ;

If tname is omitted then the identifier, polyname, becomes a polymorphic type specifier.
To declare complex types with mutually dependent pointers, it is necessary to use a
typedef to predefine one of the types. Alef does not permit mutually dependent com
plex types, only references between them. For example:

typedef aggr A;

aggr B
{

A *aptr;
B *bptr;

};

aggr A
{

A *aptr;
B *bptr;

};

4.11. Function Declarations

There are three forms of function declaration: function definition, prototype decla
ration, and function pointer declaration.

function−declaration:
type−specifier identifier (arglist) block

function−id:
pointeropt identifier array−specopt
adt−function

adt−function:
typename . decl−tag

arglist:
arg
pointer type
arglist , arg

arg:
type
type pointer
type (pointer) (arglist)
type simple−declaration
...

If a formal parameter is declared without an identifier, no variable corresponding to the
actual parameter is produced.

 15

5. Expressions

The order of expression evaluation is not defined except where noted. That is,
unless the definition of the operator guarantees evaluation order, an operator may eval
uate any of its operands first.

The behavior of exceptional conditions such as divide by zero, arithmetic overflow,
and floating point exceptions is not defined.

5.1. Pointer Generation

References to expressions of type �function returning T� and �array of T� are rewrit
ten to produce pointers to either the function or the first element of the array. That is
�function returning T� becomes �pointer to function returning T� and �array of T�
becomes �pointer to the first element of array of T�.

5.2. Primary Expressions

Primary expressions are identifiers, constants, or parenthesized expressions:

primary−expression:
identifier
constant
...
nil
(expression)
tuple

The parameters received by a function taking variable arguments are referenced using
the ellipsis The primary-expression ... yields a value of type �pointer to void�.
The value points at the first location after the formal parameters. The primary-
expression nil returns a pointer of type �pointer to void� of value 0 which is guaran
teed not to point at an object. nil may also be used to initialize channels and polymor
phic types to a known value. The only legal operation on these types after such an
assignment is a test with one of the equality test operators and the nil value.

5.3. Postfix Expressions

postfix−expression:
primary−expression
postfix−expression [expression]
postfix−expression (argument−list)
. typename . tag (argument−list)
postfix−expression . tag
postfix−expression −> tag
postfix−expression ++
postfix−expression −−
postfix−expression ?

tag:
typename
identifier

argument−list:
expression
argument−list , expression

 16

5.3.1. Array Reference

A primary expression followed by an expression enclosed in square brackets is an
array indexing operation. The expression is rewritten to be *((postfix−
expression)+(expression)). One of the expressions must be of type pointer, the other
of integral type.

5.3.2. Function Calls

The postfix−expression must yield a value of type �pointer to function�. A type dec
laration for the function must be declared prior to a function call. The declaration can be
either the definition of the function or a function prototype. The types of each argu
ment in the prototype must match the corresponding expression type under the rules of
promotion and conversion for assignment. In addition unnamed complex type members
will be promoted automatically. For example:

aggr Test
{

int t;
Lock; /* Unnamed substructure */

};

Test yuk; /* Definition of complex object yuk */
void lock(Lock*); /* Prototype for function lock */

void
main()
{

lock(&yuk); /* address of yuk.Lock is passed */
}

Calls to member functions may use the type name instead of an expression to
identify the ADT. If the function has an implicit first parameter, nil is passed. Given
the following definition of X these two calls are equivalent:

adt X
{

int i;
void f(*X);

};

X val;

((X*)nil)−>f();
.X.f();

This form is illegal if the implicit parameter is declared by value rather than by refer
ence.

Calls to member functions of polymorphic ADT�s have special promotion rules for
function arguments. If a polymorphic type P has been bound to an actual type T then an
actual parameter v of type T corresponding to a formal parameter of type P will be pro
moted into type P automatically. The promotion is equivalent to (alloc P)v as
described in the Casts section. For example:

 17

adt X[T]
{

void f(*X, T);
};

X[int] bound;

bound.f(3); /* 3 is promoted as if (alloc T)3 */
bound.f((alloc T)3); /* illegal: int not same as poly */

In the unbound case values must be explicitly converted into the polymorphic type using
the cast syntax:

X unbound;

unbound.f((alloc T)3); /* 3 is converted into poly */
unbound.f(3); /* illegal: int not same as poly */

In either case the actual parameter must have the same type as the formal parameter
after any binding has taken place.

5.3.3. Complex Type References

The operator . references a member of a complex type. The first part of the
expression must yield union, aggr, or adt. Named members must be specified by
name, unnamed members by type. Only one unnamed member of type typename is per
mitted in the complex type when referencing members by type, otherwise the reference
would be ambiguous. If the reference is by typename and no members of typename
exist in the complex, unnamed substructures will be searched breadth first. The opera
tion −> uses a pointer to reference a complex type member. The −> operator follows
the same search and type rules as . and is equivalent to the expression (*postfix−
expression).tag.

References to polymorphic members of unbound polymorphic ADT�s behave as
normal members: they yield an unbound polymorphic type. Bound polymorphic ADT�s
have special rules. Consider a polymorphic type P that is bound to an actual type T. If a
reference to a member or function return value of type P is assigned to a variable v of
type T using the assignment operator =, then the type of P will be narrowed to T,
assigned to v, and the storage used by the polymorphic value will be unallocated. The
value assignment operator := performs the same type narrowing but does not unallo
cate the storage used by the polymorphic value. For example:

adt Stack[T]
{

int tos;
T data[100];

};

Stack[int] s;
int i, j, k;

i := s.data[s−>tos];
j = s.data[s−>tos];
k = s.data[s−>tos]; /* illegal */

The first assignment copies the value at the top of the stack into i without altering the
data structure. The second assignment moves the value into j and unallocates the stor
age used in the stack data structure. The third assignment is illegal since
data[s−>tos] has been unallocated.

 18

5.3.4. Postfix Increment and Decrement

The postfix increment (++) and decrement (−−) operators return the value of
expression, then increment it or decrement it by 1. The expression must be an l-value of
integral or pointer type.

5.4. Unary Operators

The unary operators are:

unary−expression:
postfix−expression
<− unary−expression
++ unary−expression
−− unary−expression
unary−operator cast−expression
sizeof cast−expression
zerox unary−expression

unary−operator: one of
? * !
+ − ~

5.5. Prefix Increment and Decrement

The prefix increment (++) and prefix decrement (−−) operators add or subtract
one to a unary−expression and return the new value. The unary−expression must be an
l-value of integral or pointer type.

5.6. Receive and Can Receive

The prefix operator <− receives a value from a channel. The unary−expression
must be of type �channel of T�. The type of the result will be T. A process or task will
block until a value is available from the channel. The prefix operator ? returns 1 if a
channel has a value available for receive, 0 otherwise.

5.7. Send and Can send

The postfix operator <−, on the left-hand side of an assignment (see the section
called Assignment), sends a value to a channel, for example:

chan(int) c;

c <−= 1; /* send 1 on channel c */

The postfix operator ? returns 1 if a thread can send on a channel without blocking, 0
otherwise.

The prefix or postfix blocking test operator ? is only reliable when used on a chan
nel shared between tasks in a single process. A process may block after a successful ?
because there may be a race between processes competing for the same channel.

5.8. Indirection

The unary operator * retrieves the value pointed to by its operand. The operand
must be of type �pointer to T�. The result of the indirection is a value of type T.

 19

5.9. Unary Plus and Minus

Unary plus is equivalent to (0+(unary−expression)). Unary minus is equivalent
to (0−(unary−expression)). An integral operand undergoes integral promotion. The
result has the type of the promoted operand.

5.10. Bitwise Negate

The operator ~ performs a bitwise negation of its operand, which must be of inte
gral type.

5.11. Logical Negate

The operator ! performs logical negation of its operand, which must of arithmetic
or pointer type. If the operand is a pointer and its value is nil the result is integer 1,
otherwise 0. If the operand is arithmetic and the value is 0 the result is 1, otherwise the
result is 0.

5.12. Zerox

The zerox operator may only be applied to an expression of polymorphic type.
The result of zerox is a new fat pointer, which points at a copy of the result of evaluat
ing unary−expression. For example:

typedef Poly;
Poly a, b, c;

a = (alloc Poly)10;
b = a;
c = zerox a;

causes a and b to point to the same storage for the value 10 and c to point to distinct
storage containing another copy of the value 10.

5.13. Sizeof Operator

The sizeof operator yields the size in bytes of its operand, which may be an
expression or the parenthesized name of a type. The size is determined from the type of
the operand, which is not itself evaluated. The result is a signed integer constant. If
sizeof is applied to a string constant the result is the number of bytes required to
store the string including its terminating NUL byte or zero rune.

5.14. Casts

A cast converts the result of an expression into a new type:

cast−expression:
unary−expression
(type−cast) cast−expression
(alloc polyname) cast−expression

type−cast:
type pointer
function−prototype
tuple tuple

A value of any type may be converted into a polymorphic type by adding the keyword
alloc before the polymorphic type name. This has the effect of allocating storage for
the value, assigning the value of cast−expression into the storage, and yielding a fat
pointer as the result. For example, to create a polymorphic variable with integer value
10:

 20

typedef Poly;
Poly p;

p = (alloc Poly) 10;

The only other legal cast involving a polymorphic type converts one polyname into
another.

5.15. Multiply, Divide and Modulus

The multiplicative operators are:

multiplicative−expression:
cast−expression
multiplicative−expression * multiplicative−expression
multiplicative−expression / multiplicative−expression
multiplicative−expression % multiplicative−expression

The operands of * and / must have arithmetic type. The operands of % must be of inte
gral type. The operator / yields the quotient, % the remainder, and * the product of the
operands. If b is non-zero then a == (a/b) + a%b should always be true.

5.16. Add and Subtract

The additive operators are:

additive−expression:
multiplicative−expression
additive−expression + multiplicative−expression
additive−expression − multiplicative−expression

The + operator computes the sum of its operands. Either one of the operands may be a
pointer. If P is an expression yielding a pointer to type T then P+n is the same as
p+(sizeof(T)*n). The − operator computes the difference of its operands. The
first operand may be of pointer or arithmetic type. The second operand must be of arith
metic type. If P is an expression yielding a pointer of type T then P−n is the same as
p−(sizeof(T)*n). Thus if P is a pointer to an element of an array, P+1 will point to
the next object in the array and P−1 will point to the previous object in the array.

5.17. Shift Operators

The shift operators perform bitwise shifts:

shift−expression:
additive−expression
shift−expression << additive−expression
shift−expression >> additive−expression

If the first operand is unsigned, << performs a logical left shift by additive−expression
bits. If the first operand is signed, << performs an arithmetic left shift by additive−
expression bits. The shift−expression must be of integral type. The >> operator is a
right shift and follows the same rules as left shift.

5.18. Relational Operators

The values of expressions can be compared as follows:

 21

relational−expression:
shift−expression
relational−expression < shift−expression
relational−expression > shift−expression
relational−expression <= shift−expression
relational−expression >= shift−expression

The operators are < (less than), > (greater than), <= (less than or equal to) and >=
(greater than or equal to). The operands must be of arithmetic or pointer type. The
value of the expression is 1 if the relation is true, otherwise 0. The usual arithmetic
conversions are performed. Pointers may only be compared to pointers of the same
type or of type void*.

5.19. Equality operators

The equality operators are:

equality−expression:
relational−expression
relational−expression == equality−expression
relational−expression != equality−expression

The operators == (equal to) and != (not equal) follow the same rules as relational oper
ators. The equality operations may be applied to expressions yielding channels and
polymorphic types for comparison with the value nil. A pointer of value nil or type
void* may be compared to any pointer.

5.20. Bitwise Logic Operators

AND−expression:
equality−expression
AND−expression & equality−expression

XOR−expression:
AND−expression
XOR−expression ^ AND−expression

OR−expression:
XOR−expression
OR−expression | XOR−expression

The operators perform bitwise logical operations and apply only to integral types. The
operators are & (bitwise and), ^ (bitwise exclusive or) and | (bitwise inclusive or).

5.21. Logical Operators

logical−AND−expression:
OR−expression
logical−AND−expression && OR−expression

logical−OR−expression:
logical−AND−expression
logical−OR−expression || logical−AND−expression

The && operator returns 1 if both of its operands evaluate to non-zero, otherwise 0.
The || operator returns 1 if either of its operand evaluates to non-zero, otherwise 0.
Both operators are guaranteed to evaluate strictly left to right. Evaluation of the expres
sion will cease as soon the final value is determined. The operands can be any mix of

 22

arithmetic and pointer types.

5.22. Constant expressions

A constant expression is an expression which can be fully evaluated by the com
piler during translation rather than at runtime.

constant−expression:
logical−OR−expression

Constant−expression appears as part of initialization, channel buffer specifications, and
array dimensions. The following operators may not be part of a constant expression:
function calls, assignment, send, receive, increment and decrement. Address computa
tions using the & (address of) operator on static declarations is permitted.

5.23. Assignment

The assignment operators are:

assignment−expression:
logical−OR−expression
unary−expression <−= assignment−expression
unary−expression assignment−operator assignment−expression
unary−expression = (type−cast) tuple

assignment−operator: one of
= := += *= /= −= %= &= |= ^= >>= <<=

The left side of the expression must be an l-value. Compound assignment allows the
members of a complex type to be assigned from a member list in a single statement. A
compound assignment is formed by casting a tuple into the complex type. Each ele
ment of the tuple is evaluated in turn and assigned to its corresponding element in the
complex types. The usual conversions are performed for each assignment.

/* Encoding of read message to send to file system */
aggr Readmsg
{

int fd;
void *data;
int len;

};

chan (Readmsg) filesys;

int
read(int fd, void *data, int len)
{

/* Pack message parameters and send to file system */
filesys <−= (Readmsg)(fd, data, len);

}

If the left side of an assignment is a tuple, selected members may be discarded by plac
ing nil in the corresponding position in the tuple list. In the following example only
the first and third integers returned from func are assigned.

 23

(int, int, int) func();

void
main()
{

int a, c;

(a, nil, c) = func();
}

The <−= (assign send) operator sends the value of the right side into a channel.
The unary−expression must be of type �channel of T�. If the left side of the expression
is of type �channel of T�, the value transmitted down the channel is the same as if the
expression were �object of type T = expression�.

5.23.1. Promotion

If the two sides of an assignment yield different complex types then assignment
promotion is performed. The type of the right hand side is searched for an unnamed
complex type under the same rules as the . operator. If a matching type is found it is
assigned to the left side. This promotion is also performed for function arguments.

5.23.2. Polymorphic Assignment

There are two operators for assigning polymorphic values. The reference assign
ment operator = copies the fat pointer. For example:

typedef Poly;
Poly a, b;
int i;

a = (alloc Poly)i;
b = a;

causes a to be given a fat pointer to a copy of the variable i and b to have a distinct fat
pointer pointing to the same copy of i. Polymorphic variables assigned with the = oper
ator must be of the same polymorphic name.

The value assignment operator := copies the value of one polymorphic variable to
another. The variable and value must be of the same polymorphic name and must rep
resent values of the same type; there is no implicit type promotion. In particular, the
variable being assigned to must already be defined, as it must have both a type and
storage. For example:

typedef Poly;
Poly a, b, c;
int i, j;

a = (alloc Poly)i;
b = (alloc Poly)j;
b := a;
c := a; /* illegal */

causes a to be given a fat pointer to a copy of the variable i and b to be given a fat
pointer to a copy of the variable j. The value assignment b:=a copies the value of i
from the storage referenced by the fat pointer of a to the storage referenced by b, with
the result being that a and b point to distinct copies of the value of i; the reference to
the value of j is lost. The assignment c:=a is illegal because c has no storage to hold
the value; c is in effect an uninitialized pointer.

A polymorphic variable may be assigned the value nil. This assigns the value 0

 24

to the pointer element of the fat pointer but leaves the type field unmodified.

5.24. Iterators

The iteration operator causes repeated execution of the statement that contains
the iterating expression by constructing a loop surrounding that statement.

expression:
assignment−expression
assignment−expression :: assignment−expression

The operands of the iteration operator are the integral bounds of the loop. The iteration
counter may be made explicit by assigning the value of the iteration expression to an
integral variable; otherwise it is implicit. The two expressions are evaluated before iter
ation begins. The iteration is performed while the iteration counter is less than the value
of the second expression (the same convention as array bounds). When the counter is
explicit, its value is available throughout the statement. For example, here are two
implementations of a string copy function:

void
copy(byte *to, byte *from)
{

to[0::strlen(from)+1] = *from++;
}

void
copy(byte *to, byte *from)
{

int i;

to[i] = from[i=0::strlen(from)+1];
}

If iterators are nested, the order of iteration is undefined.

5.25. Binding and Precedence

The binding and precedence of the operators is in decreasing order:

binding operator___

l to r () [] −> .___
r to l ! ~ ++ −− <− ? + − * & (cast) sizeof zerox___
l to r * / %___
l to r + −___
l to r << >>___
r to l ::___
l to r < <= > >=___
l to r == !=___
l to r &___
l to r ^___
l to r |___
l to r &&___
l to r ||___
l to r <−= = := += −= *= /= %= = ^= |= <<= >>=___

 25

6. Statements

Statements are executed for effect, and do not yield values. Statements fall into
several groups:

statement:
expression ;
label−statement :
block−statement
selection−statement ;
loop−statement
jump−statement
exception−statement
process−statement ;
allocation−statement ;

6.1. Label Statements

A statement may be prefixed by an identifier. The identifier labels the statement
and may be used as the destination of a goto. Label and exception identifiers have
their own name space and do not conflict with other names. Labels have function scope.

6.2. Expression Statements

Most expressions statements are function calls or assignments. Expressions may
be null. Null expressions are often useful as empty bodies to labels or iteration state
ments.

6.3. Block Statements

Several statements may be grouped together to form a block. The body of a func
tion is a block.

block:
{ autolist slist }
!{ autolist slist }

autolist:
declaration
autolist declaration

slist:
statement
slist statement

An identifier declared in autolist suspends any previous declaration of the same identi
fier. An identifier may be declared only once per block. The declaration remains in force
until the end of the block, after which any suspended declaration comes back into
effect.

The value of identifiers declared in autolist is undefined at block entry and should
be assigned to a known value after declaration but before use.

The symbol !{ introduces a guarded block. Only one thread may be executing the
statements contained in the guarded block at any instant.

 26

6.4. Selection Statements

Selection statements alter the flow of control based on the value of an expression.

selection−statement:
if (expression) statement else statement
if (expression) statement
switch expression cbody
typeof expression cbody
alt cbody

cbody:
{ caselist }
!{ caselist }

caselist:
case−item
alt−item
type−item
caselist case−item

case−item:
case constant−expression : statement
default : statement

alt−item:
case expression : statement

type−item:
case ptr−type : statement

An if statement first evaluates expression, which must yield a value of arithmetic or
pointer type. The value of expression is compared with 0. If it compares unequal
statement is executed. If an else clause is supplied and the value compares equal the
else statement will be executed. The else clause shows an ambiguity in the gram
mar. The ambiguity is resolved by matching an else with the nearest if without an
else at the same block level.

The switch statement selects one of several statements based on the value of
expression. The expression is evaluated and converted into an integer. The integer is
compared with the value specified in each case. If the integers compare, control is
transferred to the statement after the matching case. If no case is matched, the
default clause is executed. If the default is omitted then none of the case state
ments is executed. The case expression must yield an integer constant. For a single
switch statement each case expression must yield a unique value.

Within a switch, alt, or typeof execution proceeds normally except that a
break statement will terminate the selection statement.

The typeof statement selects one of several statements based on the type of
expression. The expression must be of polymorphic type. The expression is evaluated
and the resulting type is compared with the type specified by each case. If the types
match, the statement part of the corresponding case is executed. All the cases must
have a distinct type within a single typeof statement. If no case is matched, the
default clause is executed, if one exists; otherwise none of the case statements is
executed. If the expression is a simple variable, then within the statement supplied by
the case, the value is narrowed to the type of that case. In the default case where
expression is a simple variable the type remains polymorphic.

 27

typeof v {
case int:

print("int=%d", v); /* v passed as int */
break;

case float:
print("float=%f", v); /* v passed as float */
break;

default:
usertype(v); /* still polymorphic */
break;

}

The typeof statement is the only way to narrow the type of a polymorphic value.

The alt statement allows threads to perform communication on several channels
simultaneously without polling. The expression in each case of an alt must contain
either a send or receive operation. The alt statement provides a fair select between
ready channels. A thread will remain blocked in alt until one of the case expressions
can be evaluated without blocking. The case expression may be evaluated more than
once, therefore care should be taken when using expressions which have side effects. If
several of the case expressions are ready for evaluation one is chosen at random. A
break statement terminates each case of the alt. If the break statement is omitted
execution will proceed to execute the communication of the next case regardless of its
readiness to communicate. For example:

chan(Mesg) keyboard, mouse;
Mesg m;

alt {
case m = <−keyboard:

/* Process keyboard event */
break;

case m = <−mouse:
/* Process mouse event */
break;

}

The alt statement is also used to discriminate between the type of values
received from channels of variant protocols. In this form each case−item of the alt
must be a simple assignment. The right hand side must contain a communication oper
ation on a channel which supplies a variant protocol. The type of the l-value is used to
match a type in the variant protocol. An alt may be performed on an arbitrary set of
variant protocol channels so long as no type is supplied by more than one channel.
There must be a case clause for each type supplied by the union of all channel types;
Alef requires the match against types to be exhaustive. For example:

 28

Aggr1 a;
Aggr2 b;
Aggr3 c;

chan (Aggr1, Aggr2, Aggr3) ch;

alt {
case a = <−ch:

print("received Aggr1");
break;

case b = <−ch:
print("received Aggr2");
break;

case c = <−ch:
print("received Aggr3");
break;

}

If an alt is pending on a channel the programmer must ensure that other threads
do not perform an operation of the same type on the channel until the alt is complete.
Otherwise the alt on that channel may block if values are removed by the other thread.

The symbol !{ introduces a guarded caselist. Only one thread may be executing
the statements contained in the guarded caselist at any instant.

6.5. Loop Statements

Several loop constructs are provided:

loop−statement:
while (expression) statement
do statement while (expression) ;
for (expression ; expression ; expression) statement

In while and do loops the statement is repeated until the expression evaluates to 0.
The expression must yield either an arithmetic or pointer type. In the while loop the
expression is evaluated and tested before the statement. In the do loop the statement is
executed before the expression is evaluated and tested.

In the for loop the first expression is evaluated once before loop entry. The
expression is usually used to initialize the loop variable. The second expression is eval
uated at the beginning of each loop iteration, including the first. The expression must
yield either a pointer or arithmetic type. The statement is executed while the evaluation
of the second expression does not compare to 0. The third expression is evaluated after
the statement on each loop iteration. The first and third expressions have no type
restrictions. All of the expressions are optional. If the second expression is omitted an
expression returning a non-zero value is implied.

6.6. Jump Statements

Jump statements transfer control unconditionally.

 29

jump−statement:
goto identifier ;
continue countopt ;
break countopt ;
return expressionopt ;
become expression ;

count:
integer−constant

goto transfers control to the label identifier, which must be in the current function.

6.6.1. Continue Statements

The continue statement may only appear as part of a loop statement. If count is
omitted the continue statement transfers control to the loop-continuation portion of
the smallest enclosing iteration statement, that is, the end of that loop. If count is sup
plied continue transfers control to the loop continuation of some outer nested loop.
Count specifies the number of loops to skip. The statement continue with no count is
the same as continue 1. For example:

while(1) {
while(1) {

continue 2; /* Same as goto contin; */
}

contin: /* Continue comes here */
}

6.6.2. Break Statements

Define compound to be a selection or loop statement. The break statement may
only appear as part of such a compound. If count is omitted, then the break terminates
the statement portion of the compound and transfers control to the statement after the
compound. If count is supplied, break causes termination of the some nested com
pound. Count is the number of nested compounds to terminate. A break with no
count is the same as break 1. In a selection statement, break terminates execution
of the case in the selection, and thus prevents �falling through� to the next case.

6.6.3. Return Statement

A function returns to its caller using a return statement. An expression is
required unless the function is declared as returning the type void. The result of
expression is evaluated using the rules of assignment to the return type of the function.

6.6.4. Become Statement

The become statement transforms the execution of the current function into the
calculation of the expression given as its argument. If expression is not itself a function
call, then it must have the same type as the return value of the caller and the behavior is
analogous to a return statement. If, however, it is a function call, then it need only
have the same return type; the argument list may be different. When a function P exe
cutes a become whose expression is a call of Q, the effect is exactly as if the caller of P
had instead called Q with the appropriate arguments from P. In particular, the stack
frame for P is overwritten by the frame for Q; functions that invoke one another with
become will execute in constant stack space.

 30

6.7. Exception Statements

The rescue, raise, and check statements are provided for use in error recov
ery:

exception−statement:
raise identifieropt ;
rescue identifieropt block
check expression ;
check expression , string−constant ;

6.7.1. Raise and Rescue Statement

Under normal execution a rescue block is not executed. A raise after a
rescue statement transfers control to the closest previously defined rescue state
ment in the same function. Execution flows through the end of the rescue block by
default.

Execution has no effect on the connection between raise and rescue state
ments. If an identifier is supplied in a raise statement, control is transferred to the
named rescue statement. For example, these two fragments are equivalent:

alloc p; alloc p;
rescue { goto notrescue;

unalloc p; dorescue:
raise; unalloc p;

} goto nextrescue;
notrescue:

if(error) if(error)
raise; goto dorescue;

Multiple rescue statements may be cascaded to perform complex error recovery
actions:

alloc a, b;
rescue {

unalloc a, b;
return 0;

}

alloc c;
rescue {

unalloc c;
raise;

}

dostuff();

if(error)
raise;

6.7.2. Check Statement

The check statement tests an assertion. If the assertion fails, the runtime calls an
error handler. By default the handler writes a message to standard error and exits with
the status ALEFcheck. A user-supplied error handler may be installed by setting a
handler vector. The prototype for the vector is:

void (*ALEFcheck)(byte*, byte*);

The first string argument, supplied by the compiler, is of the form file:line:

 31

func() The second argument passed to the handler will be the string−constant or the
default string check if no string is supplied by the statement. The expression is evalu
ated and compared to 0. If the compare succeeds the assertion has failed. For exam
ple, the runtime checks the return from memory allocation like this:

ptr = malloc(n);
check ptr != nil, "no memory";

6.8. Process Control Statements

An Alef program consists of one or more preemptively scheduled processes called
procs, each of which consists of one or more coroutines called tasks. An Alef program
is always executing within some task.

These statements create procs and tasks:

process−statement:
proc function−call ;
task function−call ;
par block

The proc statement creates a new proc, which starts running the named function. The
arguments to function−call are evaluated by the original proc. Since procs are sched
uled preemptively, the interleaving of their execution is undefined. What resources a
proc shares with its parent is defined by the implementation. A proc is initially created
with a single task, which begins execution at the function call.

The task statement creates a coroutine within the same proc, which begins exe
cution at the function call. The proc is maintained until all the tasks have completed. A
task completes when it returns from its initial function or calls the library function
terminate. All of the tasks within a proc share memory, including access to the
stack of each task. Tasks are non-preemptive: they are scheduled during message
passing and synchronization primitives only. In both the proc and task statements,
the function call parameters are evaluated in the original task.

The synchronization primitives that can cause task switching are defined by a
library. They are QLock.lock and Rendez.sleep. The communication operations
which can cause task switching are alt, <−= (send) and <− (receive). A process that
contains several tasks will exist until all the tasks within the process have exited. In
turn, a program will exist until all of the processes in the program have exited. A pro
cess or task may exit explicitly by calling the function exits or by returning from the
function in which it was invoked.

The par statement implements fork/process/join. A new process is created for
each statement in the block. The par statement completes when all processes have
completed execution of their statements. A par with a single statement is the same as
a block. The processes within a par have the same memory sharing model as procs
and share all automatics and parameters of the function executing the par. Locks or
QLocks may be used to synchronize write access to the shared variables. The process
that entered the par is guaranteed to be the same process that exits.

6.9. Allocation Statements

Memory management statements allocate and free memory for objects:

 32

allocation−statement:
alloc alloclist ;
unalloc alloclist ;

alloclist:
expression
alloclist , expression

6.9.1. Alloc Statement

The alloc statement takes a list of pointers, which must also be l-values. In
strictly left to right order, for each pointer, memory is reserved for an object of appro
priate type and its address is assigned to the pointer. The memory is guaranteed to be
filled with zeros. If the allocation fails because there is insufficient memory a check
condition will be generated with the argument string no memory.

If the expression has chan type, the runtime system will also initialize the new
channel. Buffers will be allocated for asynchronous channels. For example:

chan(int) a;
chan(int)[10] *p;

alloc a, p, *p;

To allocate a polymorphic value a cast expression is used as defined in the section on
Casts.

6.9.2. Unalloc Statement

The unalloc statement releases memory. The argument to unalloc must have
been returned by a successful alloc or be nil. Unalloc of nil has no effect. If an
object is unallocated twice, or an invalid object is unallocated, the runtime system will
generate a check condition with the message string arena corrupted.

6.10. Lock

The Lock ADT provides spin locks. Two operations are provided. Lock.lock
claims the lock if free, otherwise it busy loops until the lock becomes free.
Lock.unlock releases a lock after it has been claimed.

Lock ADTs have no runtime state and may be dynamically allocated. The thread
which claimed the lock need not be the thread which unlocks it.

6.11. QLock

The QLock ADT provides blocking mutual exclusion. If the lock is free
QLock.lock claims the lock. Further attempts to gain the lock will cause the thread
to be suspended until the lock becomes free. The lock is released by calling
QLock.unlock.

The thread which claimed the lock need not be the thread which unlocks it.

QLock ADTs have runtime state and may be dynamically allocated provided they
are unallocated only when unlocked.

7. The Plan 9 Implementation

The runtime, support functions, and basic library for Alef are contained in a single
library documented in section 2 of the Plan 9 Programmer�s Manual. The include file
<alef.h> contains prototypes for the library. A pragma lib directive tells vl(1) to
load the correct library elements automatically. The pragma directives supported by

 33

the compiler are documented by the compiler manual page alef(1). The compiler
ignores unrecognized pragma directives.

In Plan 9 all procs in an Alef program share the same address space. When a task
performs a system call, all tasks within its proc will be blocked until the system call com
pletes.

Programs should not receive notes unless the programmer can guarantee the run
time system will not be interrupted.

A channel may be involved in no more than one alt at any time.

The compiler does not support lint and ulint even though they are defined.

Stack bounds checking is not implemented. The external variable ALEFstack
defines the number of bytes allocated for the stack of each task. The ALEFstack vari
able can be changed any time, and is global to all task creation. The default stack size is
16000 bytes. The library function doprint has a 1024 byte automatic array so
ALEFstack should not be less than 2048 bytes.

The runtime system uses the rendezvous(2) system call to synchronize procs within
an Alef program. The rendezvous tag space is part of the name space group, so care
must be taken in forking the name space with RFNAMEG. For example after an
rfork(RFNAMEG) a task cannot synchronize or exchange messages with another
proc. A good example of the code necessary to perform this operation can be found in
the source to acme(1).

A related issue is that programs that do not fork their name space may collide with
other programs sharing the space, so unless there is strong reason not to, an Alef pro
gram should call rfork(RFNAMEG) early.

The runtime uses the variable ALEFrfflag as the argument to rfork(2) when cre
ating a proc. By default ALEFrfflag is set to RFNOWAIT|RFMEM|RFPROC. It may
be modified, for example by clearing RFNOWAIT to permit a proc to wait(2) for a child
proc to exit. The value of ALEFrfflag should be restored immediately after the
rfork.

A unique identifier for each task may be found by calling the function ALEF_tid,
declared

uint ALEF_tid();

in <alef.h>. The identifier is useful for debugging; for example, it is used in the
acid(1) alef library.

In the symbol table of the executable, member functions of ADT types are named
by concatenating the ADT name, an underscore, and the member name.

8. Yacc Style Grammar

The following grammar is suitable for implementing a yacc parser. Upper case
words and punctuation surrounded by single quotes are the terminal symbols.

 34

prog: decllist

decllist :
| decllist decl

decl : tname vardecllist ’;’
| tname vardecl ’(’ arglist ’)’ block
| tname adtfunc ’(’ arglist ’)’ block
| tname vardecl ’(’ arglist ’)’ ’;’
| typespec ’;’
| TYPEDEF ztname vardecl zargs ’;’
| TYPEDEF IDENTIFIER ’;’

zargs :
| ’(’ arglist ’)’

ztname : tname
| AGGR
| ADT
| UNION

adtfunc : TYPENAME ’.’ name
| indsp TYPENAME ’.’ name

typespec : AGGR ztag ’{’ memberlist ’}’ ztag
| UNION ztag ’{’ memberlist ’}’ ztag
| ADT ztag zpolytype ’{’ memberlist ’}’ ztag
| ENUM ztag ’{’ setlist ’}’

ztag :
| name
| TYPENAME

zpolytype :
| ’[’ polytype ’]’

polytype : name
| name ’,’ polytype

setlist : sname
| setlist ’,’ setlist

sname :
| name
| name ’=’ expr

name : IDENTIFIER

memberlist : decl
| memberlist decl

vardecllist :
| ivardecl
| vardecllist ’,’ ivardecl

ivardecl : vardecl zinit

zinit :
| ’=’ zelist

 35

zelist : zexpr
| ’[’ expr ’]’ expr
| ’.’ stag expr
| ’{’ zelist ’}’
| ’[’ expr ’]’ ’{’ zelist ’}’
| zelist ’,’ zelist

vardecl : IDENTIFIER arrayspec
| indsp IDENTIFIER arrayspec
| ’(’ indsp IDENTIFIER arrayspec ’)’

’(’ arglist ’)’
| indsp ’(’ indsp IDENTIFIER arrayspec ’)’

’(’ arglist ’)’

arrayspec :
| arrayspec ’[’ zexpr ’]’

indsp : ’*’
| indsp ’*’

arglist :
| arg
| ’*’ xtname
| ’.’ xtname
| arglist ’,’ arg

arg : xtname
| xtname indsp arrayspec
| xtname ’(’ indsp ’)’ ’(’ arglist ’)’
| xtname indsp ’(’ indsp ’)’ ’(’ arglist ’)’
| TUPLE tuplearg
| xtname vardecl
| ’.’ ’.’ ’.’

tuplearg : tname
| tname ’(’ indsp ’)’ ’(’ arglist ’)’
| tname vardecl

autolist :
| autolist autodecl

autodecl : xtname vardecllist ’;’
| TUPLE tname vardecllist ’;’

block : ’{’ autolist slist ’}’
| ’!’ ’{’ autolist slist ’}’

slist :
| slist stmnt

tbody : ’{’ ctlist ’}’
| ’!’ ’{’ clist ’}’

ctlist :
| ctlist tcase

tcase : CASE typecast ’:’ slist
| DEFAULT ’:’ slist

 36

cbody : ’{’ clist ’}’
| ’!’ ’{’ clist ’}’

clist :
| clist case

case : CASE expr ’:’ slist
| DEFAULT ’:’ slist

rbody : stmnt
| IDENTIFIER block

zlab :
| IDENTIFIER

stmnt : nlstmnt
| IDENTIFIER ’:’ stmnt

info :
| ’,’ STRING_CONST

nlstmnt : zexpr ’;’
| block
| CHECK expr info ’;’
| ALLOC elist ’;’
| UNALLOC elist ’;’
| RESCUE rbody
| RAISE zlab ’;’
| GOTO IDENTIFIER ’;’
| PROC elist ’;’
| TASK elist ’;’
| BECOME expr ’;’
| ALT cbody
| RETURN zexpr ’;’
| FOR ’(’ zexpr ’;’ zexpr ’;’ zexpr ’)’ stmnt
| WHILE ’(’ expr ’)’ stmnt
| DO stmnt WHILE ’(’ expr ’)’
| IF ’(’ expr ’)’ stmnt
| IF ’(’ expr ’)’ stmnt ELSE stmnt
| PAR block
| SWITCH expr cbody
| TYPEOF expr tbody
| CONTINUE zconst ’;’
| BREAK zconst ’;’

zconst :
| CONSTANT

zexpr :
| expr

expr : castexpr
| expr ’*’ expr
| expr ’/’ expr
| expr ’%’ expr
| expr ’+’ expr
| expr ’−’ expr
| expr ’>>’ expr
| expr ’<<’ expr

 37

| expr ’<’ expr
| expr ’>’ expr
| expr ’<=’ expr
| expr ’>=’ expr
| expr ’==’ expr
| expr ’!=’ expr
| expr ’&’ expr
| expr ’^’ expr
| expr ’|’ expr
| expr ’&&’ expr
| expr ’||’ expr
| expr ’=’ expr
| expr ’:=’ expr
| expr ’<−’ ’=’ expr
| expr ’+=’ expr
| expr ’−=’ expr
| expr ’*=’ expr
| expr ’/=’ expr
| expr ’%=’ expr
| expr ’>>=’ expr
| expr ’<<=’ expr
| expr ’&=’ expr
| expr ’|=’ expr
| expr ’^=’ expr
| expr ’::’ expr

castexpr : monexpr
| ’(’ typecast ’)’ castexpr
| ’(’ ALLOC typecast ’)’ castexpr

typecast : xtname
| xtname indsp
| xtname ’(’ indsp ’)’ ’(’ arglist ’)’
| TUPLE tname

monexpr : term
| ’*’ castexpr
| ’&’ castexpr
| ’+’ castexpr
| ’−’ castexpr
| ’−−’ castexpr
| ZEROX castexpr
| ’++’ castexpr
| ’!’ castexpr
| ’~’ castexpr
| SIZEOF monexpr
| ’<−’ castexpr
| ’?’ castexpr

ztelist :
| telist

tcomp : expr
| ’{’ ztelist ’}’

telist : tcomp
| telist ’,’ tcomp

term : ’(’ telist ’)’

 38

| SIZEOF ’(’ typecast ’)’
| term ’(’ zarlist ’)’
| term ’[’ expr ’]’
| term ’.’ stag
| ’.’ TYPENAME ’.’ stag
| term ’−>’ stag
| term ’−−’
| term ’++’
| term ’?’
| name
| ’.’ ’.’ ’.’
| ARITHMETIC_CONST
| NIL
| ENUM_MEMBER
| STRING_CONST
| ’$’ STRING_CONST

stag : IDENTIFIER
| TYPENAME

zarlist :
| elist

elist : expr
| elist ’,’ expr

tlist : typecast
| typecast ’,’ tlist

tname : sclass xtname
| sclass TUPLE ’(’ tlist ’)’
| sclass ’(’ tlist ’)’

variant : typecast
| typecast ’,’ variant

xtname : INT
| UINT
| SINT
| SUINT
| BYTE
| FLOAT
| VOID
| TYPENAME
| TYPENAME ’[’ variant ’]’
| CHAN ’(’ variant ’)’ bufdim

bufdim :
| ’[’ expr ’]’

sclass :
| EXTERN
| INTERN
| PRIVATE

